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Abstract

We provide an introduction to the design and analysis of moder-
ately exponential-time branching algorithms via the study of a col-
lection of such algorithms among them algorithms for Maximum In-
dependent Set, SAT and 3-SAT. The tools for simple running time
analysis are presented. The limits of such an analysis including lower
bounds for the worst-case running time of some particular branching
algorithms are discussed. Some exercices are given.
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1 A First Independent Set Algorithm

We first study a simple branching algorithm for the Maximum Independent
Set algorithm. The algorithm uses the standard branching rule in MIS algo-
rithms. ”For every vertex v there is a maximum independent set containing
v, or there is a maximum independent set not containing v.” Note that when
deciding that v is in the independent set then all its neighbors cannot be in
it and thus they can be deleted safely. Therefore we may write the standard
branching rule of the IS problem, that can be applied to any vertex v, as
follows:

mis(G) = max(1 + mis(G − N [v]),mis(G − v)).

The algorithm applies this rule to any vertex v of degree at most three in
the current graph as long as this is possible. The recursion is stopped when
the current graph has maximum degree two, i.e. it is a union of cycles and
paths. In such a graph a maximum independent set can be computed in
polynomial time.

It is not difficult to see that this algorithm is correct and indeed re-
turns the size of a maximum independent set of the input graph. Usually
correctness of branching algorithms is not hard to see (if not obvious).

How shall one estimate the overall running time of such a branching
algorithm? There is a well-established procedure for such an analysis that is
based on using linear recurrences. For our algorithm let T (n) be the largest
number of leaves (graphs of maximum degree two) of an input graph on n
vertices for which the polynomial time algorithm is called. Then the running
time of the algorithm is O∗(T (n)). The branching rule implies

T (n) ≤ T (n − 1) + T (n − d(v) − 1) ≤ T (n − 1) + T (n − 4).

Thus we shall say that our branching rule has branching vector (1, d(v)+1)
and the worst case is achieved if d(v) = 3. The corresponding branching
vector is (1, 4).

It is knwon that all basic solutions of such a linear recurrence are of the
form αn where α is a root of the polynomial

xn = xn−1 + xn−4.

Since we want to upper bound the running time we are interested in the
largest solution of the characteristic polynomial. Fortunately it is known
that this is always the unique positive real root of the polynomial. Using
some system like Maple, Mathematica, Matlab etc. we obtain that our
algorithm has running time O∗(1.3803n).

This analysis does not seem to take into account what the algorithm is
really doing. Somehow with this tool we can analyze branching algorithms
without understanding well what happens during an execution. But can
this really provide the worst-case running time?
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2 Fundamental Notions and Tools

We set up the scenario of a typical (moderately exponential time) branching
algorithm.

Such an algorithm consists of a collection of reduction rules and branch-
ing rules. There are also halting rules and it needs to be specified which rule
to apply on a particular instance. A reduction rule simplifies an instance
(without branching). A branching rule recursively calls subproblems of the
instance. The correctness of a branching algorithm follows from the correct-
ness of all its reduction and branching rules (which in many cases is easy to
see).

Search trees are very useful to illustrate an execution of a branching
algorithm and to facilitate the time analysis of a branching algorithm. A
search tree of an execution of a branching algorithm is obtained as follows:
assign the root node of the search to the input of the problem; recursively
assign a child to a node for each smaller instance reached by applying a
branching rule to the instance of the node. Note that we do not assign a
child to a node when an reduction rule is applied. Hence as long as the
algorithm applies reduction rules to an instance the instance simplifies but
the instance corresponds to the same node of the search tree.

What is the running time of a particular execution of the algorithm
on an input instance? To obtain an easy answer, we assume that during
its execution the running time of the algorithm corresponding to one node
is polynomial. Under this assumption, that is satisfied for all branching
algorithms to be presented, the running time of an execution is equal to the
number of nodes of the corresponding search tree up to a polynomial factor.

Thus analysing the worst-case running time of a branching algorithm
means to determine the maximum number of nodes in a search tree corre-
sponding to the execution of the algorithm on an input of size n, where n is
e.g. the number of vertices of a graph, the number of variables of a boolean
formula.

The time analysis of branching algorithms is based on upper bounding
the number of leaves of a search tree of an input of size n. Let T (n) be the
maximum number of leaves on any search tree of an input of size n. Now
each branching rule is analyzed separately and finally we use the worst-case
time over all branching rules as upper bound of the running time of the
algorithm.

Let b be a branching rule of the algorithm to be analyzed. Consider an
application of b to any instance of size n. Suppose it branches into r ≥ 2
subproblems of size at most n− t1, n− t2, . . . , n− tr, for all instances of size
n ≥ max{ti : i = 1, 2, . . . r}. Then we call �b = (t1, t2, . . . tr) the branching
vector of branching rule b. Hence

T (n) ≤ T (n − t1) + T (n − t2) + · · · + T (n − tr).
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It is known that the largest solution of any linear recurrence obtained by a
branching algorithm is the unique positive real root of

xn − xn−t1 − xn−t2 − · · · − xn−tr = 0.

Sometimes this root is called the branching factor of branching vector �b.
Having computed the branching factors αi for every branching vector bi

we simply take the largest base αi to achieve an upper bound of the running
time: α = maxi αi. Then T (n) = O∗(αn) and the running time of the
branching algorithm is O∗(αn).

3 The Second Independent Set algorithm

The algorithm consists of one branching rule which is based on the fact
that if I is a maximal independent set of G, then if v is not in I, then at
least one of the neighbors is in I. This is because otherwise I ∪ {v} would
be an independent set, which contradicts the maximality of I. Hence the
algorithm picks a vertex of minimum degree and for each vertex from its
closed neighborhood it recursively computes a maximal independent set of
the current graph.

1 int mis(G = (V,E)) {
2 if(|V | = 0) return 0;
3 choose a vertex v of minimum degree in G
4 return 1 + max{mis(G − N [y]) : y ∈ N [v]};
5 }

To analyze the running time let G be the input graph of a subproblem.
Suppose the algorithm branches on a vertex v of minimum degree d(v). Let
y1, y2, . . . yd(v) be the neighbors of v in G. Thus for solving the subproblem
G the algorithm recursively solves the subproblems G−N [x], G−N [y1], . . .
,G − N [yd(v)]. Hence we obtain immediately the recurrence

T (n) ≤ T (n − d(v) − 1) +
d(v)∑

i=1

T (n − d(yi) − 1).

Since the algorithm is branching on a vertex of minimum degree, we have:
for all i = 1, 2, . . . , d(v), d(v) ≤ d(vi), n − d(vi) − 1 ≤ n − d(v) − 1 and, by
the monotonicity of T , T (n − d(vi) − 1) ≤ T (n − d(v) − 1). Consequently

T (n) ≤ T (n − d(v) − 1) +
d(v)∑

i=1

T (n − d(v) − 1) ≤ (d(v) + 1)T (n − d(v) − 1)
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Taking s = d(v) + 1, we establish the recurrence T (s) ≤ s T (n − s), which
has the solution T (s) = sn/s. Since this function has its maximum value for
integral s when s = 3, we obtain T (n) ≤ 3n/3. Hence the running time of
the algorithm is O∗(3n/3).

To mention some features of the algorithm. Any set of vertices selected
for an independent set in a leave of the search tree is a maximal independent
set of the input graph; and each maximal independent set corresponds to
at least one leaf of the search tree. Thus the algorithm can be used to
enumerate all maximal independent sets of a graph in time O∗(3n/3), and
hence a graph on n vertices has O∗(3n/3) maximal independent sets. This
provides a new and simpler proof the well-known combinatorial theorem of
Moon and Moser. Since the bound is tight we also obtain that the worst-case
running time of the algorithm is Θ∗(3n/3).

4 The Third Independent Set algorithm

We discuss various fundamental ideas of branching algorithms for the inde-
pendent set problem and use them to construct a Third Independent Set
algorithm.

The first one is a reduction rule called domination rule.

Lemma 1. Let G = (V,E) be a graph, let v and w be adjacent vertices of
G such that N [v] ⊆ N [w]. Then

α(G) = α(G − w).

Proof. We have to prove that G has a maximum independent set not con-
taining w. Let I be a maximum independent set of G such that w ∈ I.
Since w ∈ I no neighbor of v except w belongs to I. Hence I − w + v is
an independent set of G, and thus a maximum independent set of G not
containing w.

Now let us study the branching rules of our algorithm. The standard
branching has already been discussed:

α(G) = max(α(G − N [v]), α(G − v)).

Lemma 2. Let G = (V,E) be a graph and let v be a vertex of G. If no
maximum independent set of G contains v then every maximum independent
set of G contains at least two vertices of N(v).

Proof. Every maximum independent set of G is also a maximum indepen-
dent set of G − v. Suppose there is a maximum independent set I of G − v
containing at most one vertex of N(v). If I contains no vertex of N [v] then
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I + v is independent and thus I is not a maximum independent set, contra-
diction. Otherwise, let I ∩ N(v) = {w}. Then I − w + v is an independent
set of G, and thus there is a maximum independent set of G containing v,
contradiction.

Using the above Lemma, standard branching has been refined recently.
Let N2(v) be the set of vertices in distance 2 to v in G, i.e. the set of the
neighbors of the neighbors of v, except v itself. A vertex w ∈ N2(v) is called
a mirror of v if N(v) \ N(w) is a clique. Calling M(v) the set of mirrors of
v in G, the standard branching rule can be refined via mirrors.

Lemma 3. Let G = (V,E) be a graph and v a vertex of G. Then

α(G) = max(α(G − N [v]), α(G − (M(v) + v)).

Proof. If G has any maximum independent set containing v then α(G) =
α(G − N [v]) and the lemma is true. Otherwise suppose that no maximum
independent set of G contains v. Then every maximum independent set
of G contains two vertices of N(v). Since w is a mirror the vertex subset
N(v) \ N(w) is a clique, and thus at least one vertex of every maximum
independent set belongs to N(w). Consequently, no maximum independent
set contains w, and thus w can be safely discarded.

We call the corresponding rule mirror branching.
Lemma 2 also implies the following reduction rule that we call simplicial

rule.

Lemma 4. Let G = (V,E) be a graph and v be a vertex of G such that N [v]
is a clique. Then

α(G) = 1 + α(G − N [v]).

Proof. If G has a maximum independent set containing v then the lemma
is true. Otherwise, by Lemma 2 a maximum independent set must contain
two vertices of the clique N(v), which is impossible.

Sometimes our algorithm uses yet another branching rule. Let S ⊆ V be
a (small) separator of the graph G, i.e. G−S is disconnected. Then for any
maximum independent set I of G, I ∩ S is an independent set of G. Thus
we may branch into all possible independent sets of S.

Lemma 5. Let G be a graph, let S be a separator of G and let I(S) be the
set of all independent subsets of S. Then

α(G) = max
A∈I(S)

|A| + α(G − (S ∪ N [A])).
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Our algorithm uses the corresponding separator branching only under
the following circumstances: the separator S is the set N2(v) and this set
is of size at most 2. Thus the branching is done in at most 4 subproblems
and for each of it is easy to find out the optimal choice among the vertices
of N [v].

The third Independent Set algorithm will be presented and analyzed
during the talk.

5 Two Algorithms for SAT

First we present the rules of the DPLL algorithm to solve the SAT prob-
lem from the early sixties. This branching algorithm has triggered a lot
of research in the SAT community and its ideas are used in modern SAT
solvers.

Then we study the algorithm of Monien and Speckenmeyer which was
the first one with a proven upper bound of O∗(cn) with c < 2 for 3-SAT.
Indeed this algorithm solves k − SAT for any fixed k ≥ 3 in time O∗(ck

n)
with ck < 2, where ck depends on k.

The algorithm recursively computes CNF formulas obtained by a partial
truth assignment of the input k-CNF formula, i.e. by fixing the boolean
value of some variables and literals, respectively, of F . Given any partial
truth assignment t of the k-CNF formula F the corresponding k-CNF for-
mula F ′ is obtained by removing all clauses containing a true literal, and by
removing all false literals. Hence the instance of any subproblem generated
by the algorithm is a k-CNF formula. The size of a k-CNF formula is its
number of variables.

We first study the branching rule of the algorithm. Let F be any k-CNF
formula and let c = (�1 ∨ �2 ∨ · · · ∨ �t) be any clause of F . Branching on
clause c means to branch into the following t subproblems obtained by fixing
the boolean values of some literals as described below:

• F1 : �1 = true

• F2 : �1 = false, �2 = true

• F3 : �1 = false, �2 = false, �3 = true

• Ft : �1 = false, �2 = false, · · · , �t−1 = false, �t = true

The branching rule says that F is satisfiable iff at least one Fi, i = 1, 2, . . . , t
is satisfiable, and this obviously is correct. Hence recursively solving all
subproblem instances Fi we can decide whether F is satisfiable.

Suppose F has n variables. Since the boolean values of i variables of
F are fixed to obtain the instance Fi, i = 1, 2, . . . , t, the number of (non
fixed) variables of Fi is n − i. Therefore the branching vector of this rule
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is (1, 2, . . . , t). To obtain the branching factor of (1, 2, . . . , t) we solve the
linear recurrence

T (n) ≤ T (n − 1) + T (n − 2) + · · · + T (n − t)

by computing the unique positive real root of

xt = xt−1 + xt−2 − xt−3 − · · · 1 = 0,

which is equivalent to
xt+1 − 2xt + 1 = 0.

For any clause of size t we denote the branching factor βt. Then β2 ≈ 1.6181,
β3 ≈ 1.8393, β4 ≈ 1.9276 and β5 ≈ 1.9660.

We note that on a clause of size 1, there is only one subproblem and thus
this is indeed a reduction rule. By adding some simple reduction rules for
termination saying that a formula containing an empty clause is unsatisfiable
and that the empty formula is satisfiable we would obtain a first branching
algorithm consisting essentially of the above branching rule. Of course we
may also add the reduction rule saying that if the formula is in 2-CNF then
a polynomial time algorithm will be used to decide whether it is satisfiable.
The running time of such a simple branching algorithm is O∗(βk

n) since
given a k-CNF as input all instances generated by the branching algorithm
are k-CNF, and thus every clause the algorithm branches on has size t ≤ k.

Notice that the branching factor βt depends on the size t of the clause c
chosen to branch on. Hence it is natural to aim at branching on clauses of
as small size as possible. Thus for every CNF formula being an instance of
a subproblem the algorithm chooses a clause of minimum size to branch on.
Using some nice logic insights one can guarantee that for an input k-CNF
the algorithm always branches on a clause of size at most k − 1 (except
possibly the very first branching). Such a branching algorithm solves k-SAT
in time O∗(αk

n) where αk = βk−1. Hence the algorithm solves 3-SAT in
time O(1.6181n).

6 Worst-Case Running Time and Lower Bounds

Lower bounds for the worst-case running time of branching algorithms are
of interest since the current tools for the running time analysis of branch-
ing algorithms (including Measure & Conquer) seem not strong enough to
establish the worst-case running time.

A lower bound of Ω∗(cn) to the (unknown) worst-case running time of a
particular branching algorithm is established by constructing instances and
showing that the algorithm needs running time Ω∗(cn) on those instances.
Clearly the goal is that lower and upper bound of the worst-case running
time of a particular algorithm are close.
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Theorem 1. The first Independent Set algorithm has worst case running
time Θ∗(αn), where α is the branching factor of (1, 4).

Proof. We need to prove the lower bound Ω∗(αn). To do this, consider
the graph Gn = ({1, 2, . . . , n}, E), where {i, j} ∈ E ⇔ |i − j| ≤ 3. For
this graph we assume that algorithm will solve ties by always choosing the
leftmost remaining vertex to branch on, which always has degree 3. Hence
on Gi, the algorithm branches into Gi−1 and Gi−4. Thus if the search tree
generated on Gn has T (n) leaves then T (n) ≤ T (n−1)+T (n−4), and thus
T (n) = Ω(αn).

Suppose we modify the first Independent Set algorithm such that it
branches on a maximum degree vertex. This will not change the upper
bound analysis, however the lower bound does not apply anymore. Is this a
coincidence or has the modified algorithm really a better worst-case running
time?

7 Memorization

Memorization in branching algorithms has been introduced by M. Robson.
The goal is to speed up the algorithm by storing already computed results
in a database to look them up instead of recomputing them many times on
different branches of the search tree.

The technique can be used to obtain algorithms with better upper
bounds on the running time. Unfortunately the technique leads to algo-
rithms needing exponential space, while the original branching algorithm
needs only polynomial space.

8 Branch & Recharge

This is a new approach to construct and analyse branching algorithms. The
key idea is to explicitely use weights in the algorithm to guarantee that the
running time is governed by few recurrences; and thus running time analysis
is easy. On the other hand, correctness is no longer obvious and needs a
careful analysis of the branching algorithm. A typical operation of such an
algorithm is a redistribution of the weights called recharging.

In the algorithm to be presented, every vertex is assigned a weight of 1 at
the beginning. A value ε > 0 is fixed depending on the problem. Then by a
recharging procedure, it is guaranteed that in each branching on any vertex
v the overall weight of the input decreases by 1 when not taking vertex v in
the solution set S, and it decreases by 1 + ε when selecting v in S. Hence
the only branching vector of the algorithm is (1, 1+ ε) and one immediately
obtains the running time.
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Exercices

The exercices are ordered from easy ones to research problems.

1. The HAMILTONIAN CIRCUIT problem can be solved in time O∗(2n) via
dynamic programming or inclusion-exclusion. Construct a O∗(3m/3) branch-
ing algorithm deciding whether a graph has a hamiltonian circuit, where m
is the number of edges.

2. Let G = (V, E) be a bicolored graph, i.e. its vertices are either red or blue.
Construct and analyze branching algorithms that for input G, k1, k2 decide
whether the bicolored graph G has an independent set I with k1 red and k2

blue vertices. What is the best running time you can establish?

3. Construct a branching algorithm for the 3-COLORING problem, i.e. for
given graph G it decides whether G is 3-colorable. The running time should
be O∗(3n/3) or even O∗(cn) for some c < 1.4.

4. Construct a branching algorithm for the DOMINATING SET problem on
graphs of maximum degree 3.

5. Is the following statement true for all graphs G. If w is a mirror of v and
there is a maximum independent set of G not containing v, then there is a
maximum independent set containing neither v nor w.

6. Modify the first IS algorithm such that it always branches on a maximum
degree vertex. Provide a lower bound. What is the worst-case running time
of this algorithm?

7. Construct a O∗(1.49n) branching algorithm to solve 3-SAT.
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